Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4,6-Dibromo-2,3-dimethylphenol

Qiaoru Liu, ${ }^{\text {a }}$ Jungang Wang, ${ }^{\text {b }}$ * Weijian Xue ${ }^{\text {b }}$ and $\mathrm{Qi} \mathrm{Li}^{\text {b }}$

${ }^{\mathrm{a}}$ School of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, People's Republic of China, and ${ }^{\mathbf{b}}$ Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
Correspondence e-mail: qwjgq@163.com
Received 18 January 2011; accepted 24 January 2011
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.037 ; \omega R$ factor $=0.090 ;$ data-to-parameter ratio $=22.1$.

The molecule of the title compound, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}$, is approximately planar with a maximum deviation of 0.063 (1) \AA for one of the Br atoms. In the crystal, adjacent molecules are joined intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming chains parallel to [010]. The structure also features a short $\mathrm{Br} \cdots \mathrm{Br}$ interaction of 3.362 (1) A .

Related literature

For the synthesis, see: Lai et al. (1993). For a related structure, see: Bringmann \& Messer (2001).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}$
$M_{r}=279.96$

Monoclinic, $P 2_{1}$
$a=7.3604$ (5) A
$b=4.4310$ (6) \AA
$c=14.0245(10) \AA$
$\beta=92.482(1)^{\circ}$
$V=456.96(8) \AA^{3}$

$Z=2$

Mo $K \alpha$ radiation
$\mu=8.81 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
$0.16 \times 0.12 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.333, T_{\text {max }}=0.473$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.090$
$S=0.99$
2250 reflections
102 parameters
H-atom parameters constrained

5557 measured reflections 2250 independent reflections 1882 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.042$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.82	2.25	$2.913(4)$	139

Symmetry code: (i) $-x+1, y-\frac{1}{2},-z+2$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This research was supported by the Top-class Foundation of Pingdingshan University (No. 2006045).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5106).

References

Bringmann, G. \& Messer, K. (2001). Phytochemistry, 56, 387-391. Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Lai, Y.-H. \& Yap, A. H.-T. (1993). J. Chem. Soc. Perkin Trans 2, pp. 1373-1377. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2011). E67, o712 [doi:10.1107/S1600536811003151]

4,6-Dibromo-2,3-dimethylphenol

Q. Liu, J. Wang, W. Xue and Q. Li

Comment

In the title compound, $C \sim 8 \sim \mathrm{H} \sim 8 \sim \mathrm{Br} \sim 2 \tilde{\mathrm{O}}$, the adjacent molecules are molecules are joined togethe by the $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 1(-x$, $y-1 / 2,2-z$) hydrogen bond, forming a one-dimensional chain running parallel to the [010] direction(Table 1 and Figure 2). Also $\mathrm{Br} \cdots \mathrm{Br}$ interaction was observed in (I) with a distance of 3.362 (1) \AA between them All the bond lengths and angles are similar to the reported compound (Bringmann et al., 2001).

Experimental

The title compound, synthesized by 2,3-dimethyl phenylamine through three steps such as bromination, diazotization-brom-ination-hydrolysis reaction. The operating process was based on the literarure (Lai et al., 1993) and made some improvement.

Firstly, 1-amino-4-bromo-2,3-dimethylbenzene was prepared from 2,3-dimethyl phenylamine as described in the literarure(Lai et al., 1993). Then treatment as follows: Sodiumnitrite ($1.75 \mathrm{~g}, 25 \mathrm{mmol}$) in water (10 ml) was added dropwise into the rapidly stirring mixture of 40% hydrogen bromide (15 ml) containing l-amino-2,3-dimethylbenzene (5.00 g , 25 mmol). The mixture was kept in an ice-bath stiring for 2 h , while the temperature was kept below $5^{\circ} \mathrm{C}$ by the addition of pieces of ice. Then added $1.97 \mathrm{~g}(14 \mathrm{mmol})$ cuprous bromide which was pretreatmented by refluxing with $10 \mathrm{ml} 40 \%$ hydrogen bromide solution for 1 h . After the addition the mixture was heated refluxing for an additional 1 h , and then cooled to room temperature, extract by methylenechloride. The organic layer was washed by water, dried by anhydrous natriumsulfate, evaporated under reduced pressure and chromatographed on silica gel with hexane as the eluent. The title compound was obtained as needle crystal solid 1.82 grams. Yield was 26%. Colorless needle-like single crystals suitable for X-ray diffraction studies were obtained by slow evaporation of a solution of the title compound in chloroform: methanol (3:1) at room temperature.

Refinement

In (I), all carbon H atoms were positioned geometrically and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and U ĩso $) \sim(\mathrm{H})=$ $1.2 U \neg \sim \mathrm{eq} \mid \sim(\mathrm{C})$ for aromatic H atoms, and $\mathrm{C}-\mathrm{H}=0.96 \AA$ and U ĩso $) \sim(\mathrm{H})=1.5 U \sim$ eq $\backslash(\mathrm{C})$ for methyl H atoms. H 1 atom was found first from the difference map and placed at its ideal position with the $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{U} \backslash \mathrm{i} s o l \sim(\mathrm{H})=1.5 \mathrm{U} \backslash \sim \mathrm{eq} \backslash(\mathrm{O})$. The Friedel pairs is 1275.

supplementary materials

Figures

Fig. 1. The structure of the title compound, showing 30\% probability displacement ellipsoids and the atom-numbering scheme.

4,6-Dibromo-2,3-dimethylphenol

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}$
$M_{r}=279.96$
Monoclinic, $P 2_{1}$
Hall symbol: P 2yb
$a=7.3604$ (5) \AA
$b=4.4310(6) \AA$
$c=14.0245(10) \AA$
$\beta=92.482(1)^{\circ}$
$V=456.96(8) \AA^{3}$
$Z=2$
$F(000)=268$
$D_{\mathrm{x}}=2.035 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2355 reflections
$\theta=2.8-24.5^{\circ}$
$\mu=8.81 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Needle, colorless
$0.16 \times 0.12 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
graphite
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.333, T_{\text {max }}=0.473$
5557 measured reflections
2250 independent reflections
1882 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-9 \rightarrow 9$
$k=-5 \rightarrow 5$
$l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.090$
$S=0.99$
2250 reflections
102 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0403 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.57$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.29$ e \AA^{-3}
Absolute structure: Flack (1983), 1275 Friedel pairs
Flack parameter: 0.02 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
Br1	$0.87217(5)$	$-0.34219(12)$	$0.92038(3)$	$0.05521(15)$
Br2	$0.86105(8)$	$0.29262(15)$	$0.57447(4)$	$0.0790(2)$
C1	$0.5729(5)$	$0.0139(10)$	$0.8491(3)$	$0.0436(9)$
C2	$0.4789(5)$	$0.2000(10)$	$0.7846(3)$	$0.0458(10)$
C3	$0.5600(6)$	$0.2866(12)$	$0.6995(3)$	$0.0496(9)$
C4	$0.7350(6)$	$0.1753(13)$	$0.6843(3)$	$0.0516(9)$
C5	$0.8255(5)$	$-0.0114(11)$	$0.7471(3)$	$0.0498(10)$
H5	0.9405	-0.0835	0.7342	0.060^{*}
C6	$0.7440(5)$	$-0.0922(9)$	$0.8300(3)$	$0.0429(9)$
C7	$0.2920(6)$	$0.3103(13)$	$0.8071(4)$	$0.0621(12)$
H7A	0.2479	0.1971	0.8597	0.093^{*}
H7B	0.2110	0.2837	0.7522	0.093^{*}
H7C	0.2978	0.5204	0.8237	0.093^{*}
C8	$0.4589(8)$	$0.4836(14)$	$0.6281(4)$	$0.0684(14)$
H8A	0.5442	0.5917	0.5911	0.103^{*}
H8B	0.3849	0.6245	0.6610	0.103^{*}
H8C	0.3828	0.3605	0.5866	0.103^{*}
O1	$0.4886(4)$	$-0.0551(8)$	$0.9326(2)$	$0.0533(8)$
H1	0.5505	-0.1777	0.9634	0.080^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0508(2)$	$0.0528(2)$	$0.0620(3)$	$0.0041(2)$	$0.00077(17)$	$-0.0045(2)$
Br 2	$0.0927(4)$	$0.0918(4)$	$0.0547(3)$	$-0.0172(3)$	$0.0285(3)$	$-0.0037(3)$
C1	$0.043(2)$	$0.0419(19)$	$0.046(2)$	$-0.0093(17)$	$0.0072(16)$	$-0.0128(19)$
C2	$0.047(2)$	$0.042(3)$	$0.049(2)$	$-0.0074(17)$	$0.0016(16)$	$-0.0067(17)$
C3	$0.061(2)$	$0.044(2)$	$0.043(2)$	$-0.012(2)$	$-0.0015(18)$	$-0.007(2)$
C4	$0.059(2)$	$0.054(2)$	$0.043(2)$	$-0.015(2)$	$0.0118(16)$	$-0.004(2)$
C5	$0.045(2)$	$0.049(2)$	$0.056(3)$	$-0.006(2)$	$0.0103(18)$	$-0.014(2)$
C6	$0.043(2)$	$0.042(2)$	$0.043(2)$	$-0.0011(17)$	$-0.0010(16)$	$-0.0099(18)$
C7	$0.046(2)$	$0.066(3)$	$0.074(3)$	$0.004(2)$	$0.007(2)$	$0.001(3)$
C8	$0.089(4)$	$0.063(3)$	$0.052(3)$	$-0.001(3)$	$-0.006(3)$	$0.002(3)$
O1	$0.0545(17)$	$0.0582(19)$	$0.0482(18)$	$0.0023(15)$	$0.0143(13)$	$0.0007(15)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{C} 6$	$1.903(4)$
$\mathrm{Br} 2-\mathrm{C} 4$	$1.905(4)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.381(5)$
$\mathrm{C} 1-\mathrm{O} 1$	$1.383(5)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.387(6)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.411(6)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.507(6)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.404(7)$
$\mathrm{C} 3-\mathrm{C} 8$	$1.501(7)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.361(7)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{O} 1$	$122.4(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$120.6(4)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$117.1(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$119.8(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$119.4(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	$120.9(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$117.2(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8$	$122.4(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	$120.4(4)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$122.8(4)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{Br} 2$	$116.6(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 2$	$120.6(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$119.0(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.5
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	120.5
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$120.6(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-1.2(6)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$178.0(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$179.6(4)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$-1.3(6)$

C5-C6	$1.379(6)$
C5-H5	0.9300
C7-H7A	0.9600
C7-H7B	0.9600
C7-H7C	0.9600
C8-H8A	0.9600
C8-H8B	0.9600
C8-H8C	0.9600
O1-H1	0.8200

$\mathrm{C} 5-\mathrm{C} 6-\mathrm{Br} 1$	$119.5(3)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{Br} 1$	$119.9(3)$

109.5
109.5
109.5
109.5
$\mathrm{H} 7 \mathrm{~A}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C} \quad 109.5$
H7B-C7-H7C 109.5
$\mathrm{C} 3-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A} \quad 109.5$
$\mathrm{C} 3-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B} \quad 109.5$
$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B} \quad 109.5$
C3-C8-H8C 109.5
H8A-C8-H8C 109.5
$\mathrm{H} 8 \mathrm{~B}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C} \quad 109.5$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{H} 1 \quad 109.5$

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 2$	$-177.2(3)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 2$	$4.2(7)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-1.1(7)$
$\mathrm{Br} 2-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$177.0(3)$

sup-4

supplementary materials

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.3(6)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$179.6(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	$178.9(4)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	$-1.8(7)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.8(7)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-177.8(5)$

$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.2(6)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{Br} 1$	$-177.9(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-178.2(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.9(6)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{Br} 1$	$-0.1(5)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{Br} 1$	$179.0(3)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.82	2.25	$2.913(4)$	139.
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Br} 1$	0.82	2.57	$3.108(3)$	124.
$\mathrm{C} 8 — \mathrm{H} 8 \mathrm{~A} \cdots \mathrm{Br} 2$	0.96	2.70	$3.200(6)$	113.
Symmetry codes: $(\mathrm{i})-x+1, y-1 / 2,-z+2$.				

Fig. 1

Fig. 2

